CODES: Enabling Co-Design of Multi-Layer Exascale
Storage Architectures

Jason Cope; Ning Liuj Sam Lang; Phil Carns; Chris Carothers] Robert Ross*

*Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

{copej,pcarns,rross,slang}@mcs.anl.gov

ABSTRACT

Performance and reliability design constraints for exascale
storage systems are significant challenges for HPC system
designers. We are developing the CODES simulation toolkit
to equip system designers with simulation tools so that they
better understand the features and design constraints of ex-
ascale storage systems. The goal for CODES is to enable
the exploration and co-design of exascale storage systems by
providing a detailed, accurate, and highly parallel simulation
toolkit for exascale storage. In this paper, we present the ca-
pabilities of the CODES tools that allow systems designers
to assess exascale storage system designs. We demonstrate
the use of CODES to evaluate a potential exascale storage
network model and storage system features.

1. INTRODUCTION

The data demands of science and limited rates of data access
impose daunting challenges on designers of exascale storage
architectures. Designers must consider performance and re-
liability in the context of the I/O requirements of appli-
cations and analysis tools at exascale. Meeting these con-
straints requires the development of a multi-layer hardware
and software architecture incorporating devices that do not
yet exist. Co-design of these systems is necessary to find
the best possible design points for exascale systems. The
most promising approach for co-design of such systems is
simulation.

The goal of the CODES project is to enable the explo-
ration and co-design of exascale storage systems by pro-
viding a parallel and high-fidelity framework for I/O and
storage system simulations. As part of this project, we
are developing models that realistically represent applica-
tion checkpoint and analysis workloads. These models are
coupled using the Rensselaer Optimistic Simulation System
(ROSS) [6], a discrete-event simulation framework that al-
lows simulations to be run in parallel, decreasing the sim-
ulation run time of massive simulations. Building on our
prior work in highly parallel simulation and using our new

fRensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180

{liun2,chrisc}@cs.rpi.edu

high-resolution models, our system captures the complexity,
scale, and multi-layer nature of exascale storage hardware
and software. CODES parallel simulations execute in a time
frame that enables “what if” exploration of design concepts.

In this paper, we describe our recent work and accomplish-
ments within the CODES. In Section 2, we enumerate the
exascale storage system development challenges. Section 3
describes the CODES simulation framework and how these
design challenges can be addressed within the CODES tools.
We present our first exascale storage system component, a
high-fidelity torus network model and its integration into a
prototype storage system, in Section 4. We conclude this
paper in Section 5 with a summary of our current accom-
plishments and a description of our future work.

2. EXASCALE DESIGN CHALLENGES

There are several challenges in developing high-performance
and reliable I/O exascale storage systems. The availabil-
ity of hardware and system software components for these
systems is still years away. System designers must model
and simulate these systems in order to understand potential
exascale storage system designs and use cases. Simulation
results can be fed back into the co-design process to influ-
ence the design of future exascale system components. We
are developing the CODES toolkit to allow designers to in-
vestigate the trade-offs of two critical design constraints for
these systems: performance at scale and fault tolerance.

Performance at scale is one of the critical design constraints
for HPC systems. Ideally, applications executing at full-
scale on a system will achieve faster time-to-solution and ef-
ficiently solve more complex problems. Current application
I/0 scaling and tuning research on petascale-class systems
provides a glimpse of performance bottlenecks likely to oc-
cur on exascale-class systems [4, 12, 16]. Exascale class sys-
tems will require reductions in the number of clients access-
ing storage systems due to increases in concurrency, efficient
data placement techniques due to increases in the number
of storage devices, and overcoming the stagnation in storage
device performance.

CODES provides tools to model the performance bottle-
necks of exascale storage systems and evaluate I/O tech-
niques to solve these bottlenecks. Using CODES, exascale
system designers can evaluate features of I/O and storage
systems software for a variety of device performance pa-
rameters and system configurations. By varying application

workloads and various exascale storage system configura-
tions, designers can evaluate how design features of an ex-
ascale storage will impact classes of applications or specific
application I/O patterns.

Fault tolerance and reliability are essential features of large
HPC systems. The predicted component count of exascale
systems insinuates that the occurrence of failures will be
more frequent on these systems and that new classes of fail-
ures may occur. For example, the large component count
of exascale storage systems will require efficient techniques
to isolate storage system failures, scalably disseminate fail-
ure information throughout the storage system, and effi-
ciently recover from failures while reducing interruptions to
applications. CODES provides an ideal platform for model-
ing the reliability of exascale storage systems and evaluat-
ing scalable fault tolerance and recovery techniques. Using
CODES, designers can develop storage and I/O component
models that consider failure rates of individual components
and systems when evaluating exascale-class fault tolerance
techniques.

3. CODES SIMULATION FRAMEWORK

Evaluating I/O and storage system features that address
the design challenges of exscale storage systems is possible
using CODES. CODES consists of a suite of hardware and
software models of HPC computing and storage system com-
ponents. Using the ROSS parallel discrete-event simulation
framework, it is possible to compose and simulate a vari-
ety of exascale storage system configurations in a tractable
amount of time.

It is possible to interface CODES’ models with actual imple-
mentations of storage and I/O system software tools (pro-
vided that these tools support a CODES model or resource
interface). This enables the simulation and evaluation of re-
source models and HPC system configurations while using
real system software tools as the simulation drivers. This
provides a mechanism to evaluate storage system features
within the context of existing system software tools.

Figure 1 illustrates the components modeled in CODES. It
describes how the CODES’ models are coupled with stor-
age systems software to enable the simulation of exascale
storage systems. A variety of HPC 1/O workloads are used
to drive CODES’ simulations. These I/O workloads gen-
erate application level I/O requests. The application level
1/0 requests are executed by the I/O and storage system
software models. The I/O and storage resource models are
the lowest layer of the CODES suite of models. As a first
step in the development of CODES models, we developed a
torus network model accurate at the granularity of network
packets.

4. SIMULATING EXASCALE STORAGE SYS-

TEMS

We were motivated to develop a torus model because of its
scalability characteristics for large scale systems, such as the
predicted characteristics of exascale storage systems. Exas-
cale supercomputers will have millions or even hundreds of
millions of processing cores and the potential for billion-way
parallelism. Exascale compute and data storage architec-

Application I/0O Workloads

*

Exascale I/0 Architecture Models

/0 Aggregation
Nodes

*

System Software
I/0 Software

Compute Nodes

Storage Software

Models Real Models Real

7 .

S A

Storage Storage Device

Network Models Models
T

Figure 1: CODES Exascale Storage Simulation

Framework

tures will be critically dependent on the interconnection net-
work. The most popular interconnection network for current
and future supercomputer systems is the torus (e.g., k-ary,
n-cube). Blue Gene and Cray XT supercomputer families
adopt a 3-D torus. Typically, the 3-D torus network fixes the
number of nodes in two dimensions so the system only grows
in the third dimension as racks of new systems are added.
This leads to a linear increase in the maximum latency. One
solution to this problem is to create a torus network with a
larger number of dimensions as is the case with the upcom-
ing Blue Gene/Q which will have a 5-D torus network [7, 8,
14, 5].

By design, a torus network provides low latencies and high
bandwidth at a moderate cost to construct. A number of
research efforts have concentrated on the design and opti-
mizations of switching fabric and routing algorithms [11, 1,
15, 9] for torus networks.

4.1 Torus Model Implementation

There are several assumptions currently built into our torus
model. The model currently uses deterministic static rout-
ing since this routing protocol is easy to implement and
deadlock free. Systems that provide torus networks, such
as the Blue Gene systems, typically use dynamic routing or
hybrid static-dynamic routing approach.

Markovian models are a popular approach to understand
interconnection network performance [2]. For the purpose
of this performance study, we capture the time independent
nature of the packet stream and simply let it follow the
Poisson Process with a mean arrival rate of A. In our torus

exponential

interval
generate process
processing i
send to delay ueuin
outbound qdela 9
buffer Y
\ 4 routing to
neighboring node | .
send link delay + > arrive

transmission delay

Figure 2: Discrete-Event Torus Network Model.

model, each node continuously generates a Poisson stream
of packets. Each packet generated by the model randomly
chooses a destination node from a uniform distribution. This
yields a pathological traffic pattern that is a challenge to
optimize since it has little to no locality.

Figure 2 illustrates the torus network model flow chart and
the event driven approach of the model on a per node basis.
At the initial state, each node, modeled as a logical process
(LP), will generate a stream of packets with an exponential
time delay. This event generation delay forms the Poisson
packet stream on each node. Prior to sending a packet, the
destination node ID is placed into packet header so that the
torus model can route the packet to correct node. Also, the
packet generation time is stored in header which enables the
model to capture the end-to-end latency. Our experiments
assume that “application-level” message is the same size as
a packet.

4.2 Torus Model Validation Study

After implementing the torus model, we set out to vali-
date the models behavior and performance against an ex-
isting torus network. There were two parts to the val-
idation study. First, we verified that the torus network
model agrees with Little’s Law under a variety of torus
configurations and packets arrival rates. Second, we com-
pared MPI_Send()/MPI_Recv() latency times of the actual
Blue Gene/L network using 2K processors (1,024 node torus,
1x32x32) and experimental runs of our torus network model
for the same torus configuration [10].

We conducted MPI ping-pong tests on Blue Gene/L and
compared them to a ping-pong simulation. The results of
this experiment are illustrated in Figure 3. The ping-pong
experiments measured communication times between nodes
on the Blue Gene/L torus and the ROSS-based torus mode.
We configured a 250-byte torus message to ensure we used
Blue Gene’s eager communication protocol. We varied the
distances between the two communicating nodes in the torus
to use either two or eight node hops across the torus network.

Our torus network model delays are equivalent to that of the
Blue Gene/L machine with the two-hop case. Our model re-
sults diverge from the observed Blue Gene/L results for the
eight-hop case. We believe the difference lies in routing opti-
mizations made by the Blue Gene network that enable it to

14 A

12

@
::: 8 —4—2 hops BGL
g 6 3 ~—2 hops simulation
- 4 8 hops BGL

2 =>&=8 hops simulation

0 T T 1

64 128 256 512
pakcet size /Byte

Figure 3: Comparison of Torus Network Latency:
Blue Gene/L torus VS. simulation.

exceed the network performance of what our model predicts.
The model performs congestion queuing correctly and will
be sufficient at predicting storage architecture performance.
The time to commit data to RAM disk, SSD, or hard disk
ranges from hundreds of microseconds to milliseconds. The
torus network model error of two microseconds for a two-hop
torus network message is negligible for our exascale storage
modeling purposes.

4.3 Torus Model Scaling Study

After verifying the behavior of the torus model, we ana-
lyzed the performance of the torus network at an extreme-
scale of one billion nodes. As our model approaches one
billion nodes, the simulation requires significant amounts of
memory to execute. Simulating this model on Blue Gene/L
requires at least 4,096 processors and 2TB of memory. We
evalauted the strong-scaling characteristics of the torus model
at 8,192 and 16,384 processors. The results of this study are
shown in Table 1 and 2.

The total number of generated packets in these experiments
is O(10™") and the total number of events scheduled is O(10*?).
This extreme-scale torus model can sustain a continuous
packet stream of 10! packets per second. The efficiency
appears lower at 16,384 processors for the 200 packet per
nanosecond scenario when compared to our 16-million-node
torus model experiments [10]. This is attributed to the one-
billion node torus model being under-loaded with packets
relative to the 16-million node torus model. In the absence
of queuing effects, events are scheduled closer together in
simulated time for the 1-billion node torus model. This be-
havior leads to a higher rollback probability. The overall
loss in event-rate performance is attributed to the larger
event population. The additional RAM requirements for
this model increases queuing overheads and leads to larger
cache-memory overheads.

4.4 Torus Model Integration

After validating the model execution behavior and verify-
ing it’s performance characteristics, we integrated the torus
model into an existing storage system. The goal for this
model integration activity was to verify that the model could
be used to transfer actual storage system network traffic and
to demonstrate the models usefulness for evaluating storage
system software using simulated networks. By coupling the
torus model to the existing storage systems, it is possible to

Table 1: Strong scaling performance of 1-billion-
node model at configuration 32° with packet arrival
rate of 200pkt/ns.

number of processors 4,096 8,192 16,384
number of packets (G) 40 40 40
efficiency 97.05% 96.00% 81.90%
event-rate (M/sec) 639 1,066 1,681
remote event percentage 11.72% 12.41% 13.79%
secondary rollback rate 0.0286% 0.0347% 0.220%
number of event (G) 5,644 5,644 5,644

Table 2: Strong scaling performance of 1-billion-
node model at configuration 32°% with packet arrival
rate of 400pkt/ns.

number of processors 4,096 8,192 16,384
number of packets (G) 80 80 80
efficiency 97.33% 96.81% 96.42%
event-rate (M/sec) 638 1,241 1,966
remote event percentage 11.72% 12.41% 13.79%
secondary rollback rate 0.0268% 0.0312% 0.0245%
number of event (G) 11,442 11,442 11,442

evaluate next generation and revolutionary techniques for
exascale storage systems.

There are two requirements to ensure that storage system
functions correctly when using the torus model. First, the
messages transfered between the storage system nodes must
be valid. The generated message traffic between the stor-
age system instances cannot be simulated and must be cor-
rectly formatted messages with real payload data. Second,
the storage system prototype most provide a ROSS-enabled
network resource that is compatible with other network re-
sources used by the storage system. While the storage sys-
tem provides several I/O resources with consistent resource
access interfaces, the underlying transport layer for each net-
work resource varies. For example, MPI-based and ROSS-
based network resources are available for the prototype stor-
age system.

Prototype I/O
and Storage
System Instance

Prototype I/O
and Storage
System Instance

Network
Resource

Network
Resource

CODES
/0 Model

CODES
/O Model

CODES
Torus Model

CODES
Torus Model

fi-i
fi-i

MPI MPI

Figure 4: Integration of CODES torus model into
storage system prototype.

Figure 4 illustrates how the CODES torus model integrates

with the prototype storage system. To integrate the ROSS-
based torus model into the prototype storage system, we
modified the ROSS network resource to include the torus
model. Since, this ROSS network resource simulates net-
work transfers issued by the storage system, the torus model
intercepts the communication requests and simulates the
traffic across the torus. Additionally, the ROSS network
resource ensures that the actual message payload is cor-
rectly received at the receiver while the torus model sim-
ulates data transfers using empty message payloads. The
ROSS network resource interacts with the torus model (us-
ing the torus model API) to translate the storage system
messages into messages that conform to the torus model
communication requirements. The ROSS network resource
coordinates the transfer of data across the torus and signals
the receivers ROSS network resource when the transfer is
complete. The end result of this simulation setup is that
the storage system issues network transfer requests, simu-
lates the transfers across the torus model using fake data
payloads, detects when the storage system message transfer
is complete, and delivers the actual message to the remote
storage system instances.

5. CONCLUSIONS AND FUTURE WORK

We are still in the early stages of the CODES project and
have completed several milestones. We completed the de-
velopment of our first model for an exascale storage system
with the ROSS-based torus model. We integrated this model
with an existing storage system prototype and demonstrated
the use of the torus model within a systems software tool.

We are currently developing additional CODES models to
compliment our torus model. We are integrating this model
with additional systems software tools. Currently, we are in-
tegrating CODES and ROSS with the I/O Forwarding Scal-
ability Layer (IOFSL) [13, 3]. Using the CODES tools, we
will analyze several algorithms to address scalable fault tol-
erance within exascale storage systems.

Acknowledgements

This work was supported by the Office of Advanced Scientific
Computer Research, Office of Science, U.S. Dept. of Energy,
under Contract DE-AC02-06CH11357.

6. REFERENCES

[1] H. Abu-Libdeh, P. Costa, and A. Rowstron. Symbiotic
routing in future data centers. In ACM Conference on
Special Interest Group on Data Communication
(SIGCOMM’10), pages 51-62, New Delhi, India, Aug.
2010.

[2] A. Agarwal. Limits on interconnection network
performance. IEEE Transactions on Parallel and
Distributed Systems, 2(4):398-412, 1991.

[3] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang,

R. Latham, R. Ross, L. Ward, and P. Sadayappan.
Scalable 1/O Forwarding Framework for
High—Performance Computing Systems. In IEEE
International Conference on Cluster Computing 2009,
2009.

[4] J. Bent, G. Gibson, G. Grider, B. McClelland,

P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate.
PLFS: A checkpoint filesystem for parallel

[12]

[13]

[14]

[15]

applications. In Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis (SC ’09), New York, NY, USA, 2009. ACM.
T. Blog. About 16 and 17 core processors.
http://www.top500.0rg/blog/2010/12/06/about_
16_and_17_core_processors, 2010.

C. Carothers, D. Bauer, and S. Pearce. ROSS: A
High-Performance, Low memory, Modular Time Warp
System. Journal of Parallel and Distributed
Computing, (62):1648-1669, 2002.

DOE. "Sequoia” draft statement of work.
https://asc.1llnl.gov/sequoia/rfp/, 2008.
HPCWire. Lawrence livermore prepares for 20 petaflop
blue gene/q. http://www.hpcwire.com/features/

Lawrence-Livermore-Prepares-for-20-Petaflop-Blue-GeneQ-38948594.

html, 2009.

J. Kim, W. J. Dally, B. Towles, and A. K. Gupta.
Microarchitecture of a high-radix router. In
Proceedings of the 32nd International Symposium on
Computer Architecture (ISCA’05), Madison,
Wisconsin, USA, June 2005.

N. Liu and C. Carothers. Modeling billion-node torus
networks using massively parallel discrete-event
simulation. In Proceedings of 25th IEEE/ACM/SCS
Workshop on Principles of Advanced and Distributed
Simulation , 2011.

G. Mora, J. Flich, J. Duato, P. Lopez, and E. Baydal.
Towards and efficient switch architecture for
high-radix switches. In ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems (ANCS’06), pages 11-20, San Jose,
California, USA, Dec. 2006.

A. Nisar, W. K. Liao, and A. Choudhary. Scaling
Parallel I/O Performance Through I/O Delegate and
Caching System. In SC ’08: Proceedings of the 2008
ACM/IEEEFE conference on Supercomputing, 2008.

K. Ohta, D. Kimpe, J. Cope, K. Iskra, R. Ross, and
Y. Ishikawa. Optimization Techniques at the I/O
Forwarding Layer. In IEEE International Conference
on Cluster Computing 2010, 2010.

T. Register. IBM uncloaks 20 petaflops bluegene/q
super. http://www.theregister.co.uk/2010/11/22/
ibm_blue_gene_q_super/, 2010.

J. Shalf, S. Kamil, L. Oliker, and D. Skinner.
Analyzing ultra-scale application communication
requirements for a reconfigurable hybrid interconnect.
In Proceedings of the 2005 ACM/IEEE Super
Computing (SC’05), Seattle, Washington, USA, Nov.
2005.

V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe,

V. Morozov, M. Papka, R. Ross, and K. Yoshii.
Accelerating I/O Forwarding in IBM Blue Gene/P
Systems. In SC' 2010, 2010.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

